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ABSTRACT
In this paper we evaluate the similarity-measure factors pro-
posed by Zhang and Youssef based on the NTCIR-11 gold
standard. In contrast to Zhang and Youssef we evaluate
them individually. The evaluation indicates that four of five
factors are relevant. The fifth factor alone is of lower rele-
vance than the other four factors. However, we do not prove
that the fifth factor is irrelevant.
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1. INTRODUCTION
In our Formula Search Engine (FSE) team contribution

for NTCIR-10, we developed a concept which we claimed
would enhance math search research significantly [5]. The
idea is to separate questions regarding big data processing
from conceptual questions regarding Math search. This leads
to an accelerated development cycle because the processing
in regard to math search is not distracted by data organiza-
tion efforts. In this paper, we take advantage of this accel-
erated development cycle to evaluate the similarity-measure
factors for formulae recently proposed in Zhang & Youssef
(2014) [7] based on the NTCIR-11 data set.

This paper makes two major contributions. First, us-
ing the large human-generated ground truth in NTCIR (i.e.
2500 manually evaluated document sections), this paper per-
forms a broader evaluation of Zhang and Youssef’s similarity
search than the one reported in [7]. That is the larger and
standardized NTCIR test collection is being used, rather
than a hand crafted subset of the Digital Library of Math-
ematical Formulae. Second, this paper evaluates the con-

tribution of each individual similarity factor out of the five
factors identified by Zhang and Youssef. In [7], the similarity
measure combines all five factors into a single metric, which
was evaluated collectively. In contrast, this paper evalu-
ates the impact of each factor separately, thus providing a
more fundamental insight into the contributions of each fac-
tor, and leading the way for a more targeted fine-tuning of
similarity-search parameters and thus to better optimization
of math similarity search.

2. FORMULA SIMILARITY SEARCH
Exact formula search queries can be formalized using lan-

guages such as XQuery, XPath, or the MathWebSearch α-
equivalence language concept [3]. The result set depends on
the data only, and if implemented correctly, is independent
of the realization in the language used. This method works
well for queries that lead to few results (on the order of 10).

For larger result sets, usual query refinement techniques
(such as [2, 4]) known from traditional, general-purpose databases,
can be applied in order to reduce the result set size. The au-
thors are not aware of any math query refinement techniques
specific to exact search.

In contrast, the concept of similarity based search (here-
after similarity search) is that a score is assigned to the
Cartesian product of the formulas and search patterns. For
each query, a partially score-ordered result set is returned.
Since the score calculation might be computationally ex-
pensive, approximations to this exact scoring method are
usually used. Note that in the worst case, the score for a
pattern-formula tuple depends on the full collection of for-
mulae in the data set. It is common that this score will
depend on a set of aggregated values derived from the data
set. An example of aggregated values are the frequencies
of variable occurrence. Regardless of the technical aspects,
there is no established way to define similarities between for-
mulae. For example one system which uses similarity search
is MIaS [6].
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Figure 1: Projection to the Content Dictionary di-
mension for the search pattern x0

x1 + x2
x1 = x3

x1 .

3. SIMILARITY-MEASURE FACTORS
The following Math similarity-measure factors are listed

and explained in [7]:

1. Taxonomic Distance based on Content Dictionaries;

2. Data-Type Hierarchical Level;

3. Match-Depth;

4. Query Coverage; and

5. Formula vs. Expression.

Factor 1 assumes a taxonomy of functions, and assigns
more similarity between two functions if they belong to the
same taxonomic class (e.g., if both are trigonometric func-
tions), and less similarity if the functions belong to two dif-
ferent classes, within a larger super-class (e.g., one trigono-
metric function and the logarithm, being in different classes
but within the super-class of elementary functions). Factor
2 assumes a hierarchy of math objects, such as constants
(level 0), variables (level 1), functions and operations (level
2), functionals like integration and differentiation (level 3),
and so on. The higher the levels of two math objects are,
the more weight is assigned to their similarity/dissimilarity.
Factor 3 assigns a larger distance (less similarity) between
a query expression/formula Q and a hit expression/formula
E when Q is more deeply nested in E. For example, if Q is

x2 + y2, E1 is x2 + y2 + 2xy, and E2 is exp
(

1
x2+y2+5

)
, then

Q is assumed to be more similar to E1 than to E2. Factor 4
measures how much of a query Q is present in a potential hit
E: the more terms and structure of Q there is in E, the more
similarity is assigned between Q and E. Finally, Factor 5
assigns more weight to hits that are formulas (involving a
comparison operator) such as “sin2 x + cos2 x = 1” than to
non-formula expressions like “sinx+ cos y”.

In our evaluation, we treat each factor as a separate mea-
sure and we qualify these factors in the following way. For
Factor 1, we perform a reduction of the math objects and
search pattern by projecting patterns and formulae to the
Content Dictionary dimension. For example, we replace
arithmetic operators, such as those in {+,−, ∗, /}, by their
Content Dictionary arith1 (cf. Figure 1) to generalize to
the taxonomic class.

For Factor 2, we do the same thing but with regard to
the data-type dimension. If a reduced pattern matches a
reduced formula, we call this a generalized hit. We count
the number of generalized hits with regard to the assessor
ranking v.

For Factor 3, we calculate the Match-Depth penalty fac-
tor (or level-coefficient) [6]. Note that since only 8 of the 55
given search patterns contain exact matches at any depth,
the sample size for this evaluation is significantly smaller.

Average relevances are calculated for all Match-Depth penalty
factors.

For Factor 4, queries and formulas are converted to bags
of tokens. We compare each pattern with each formula and
count the number of tokens from each pattern which are
also tokens of the formulae. We normalize this to the total
number of tokens with regard to pattern. In a subsequent
step, we group (i.e., quantize) the results into 11 buckets (0-
5%, 15-25%, ... 85-95%, 95-100%) and calculate the average
relevance ranking for each bucket.

For Factor 5, we apply a method similar to measure fac-
tors 1 and 2. For every math object, we determine if it is
in the Formula category or in the Expression category. The
math object is in the Formula category if it contains a re-
lational operator at the root level, and otherwise is in the
Expression category. The following set of relational opera-
tors were considered as indicators for the Formula category
{=,≡, 6=, <,>,≤,≥}.

4. EVALUATION
For the evaluation, we used the document sections origi-

nating from the arXiv. Those were selected in the pooling
process of the NTCIR-11 task. We refer to this data set
as the gold standard data set. For each of the 50 topics
defined in the NTCIR-11 Math Task, human assessors as-
signed relevance rankings to 50 document sections. This
leads to a collection of 2429 distinct arXiv document sec-
tions with 5 ranking categories from 0 (not relevant) to 4
(most relevant). For more details concerning the evaluation
process, refer to the NTCIR-11 Math overview paper [1].
Our evaluation deals with similarity measures for individual
formulae. Most of the 2250 document sections that contain
mathematical expressions have more than one math expres-
sion. This is unfortunate for the task at hand, since our
similarity factors are formula-centric and not document sec-
tion based. Furthermore, the consideration of keywords that
are included in the topics in addition to the formula search
patterns listed in table 3 add an additional source of error
for our evaluation. However, due to the reasonable size of
the data set, those effects might average out. Thus, we are
still able to show the correlation between relevance ranking
and the presence of similarity factors.

We mapped the relevance ranking for a document sec-
tion to all mathematical objects contained in that section.
For articles with more than one formula, this ensured that
the formula that leads to classification of the article as rele-
vant, is also marked as relevant. For example, if a document
with two mathematical objects was considered as relevant to
a particular topic by the assessors, both formulas are con-
sidered as relevant with regard to all math search patterns
occurring in this topic. Forty Seven topics include only one
search pattern, two topics include two search patterns, and
topic 48 contains 4 search patterns (see table 3). The down-
side of this approach is that formulae that are in the same
article and did not influence the ranking of the assessor in
a positive way, were marked as relevant, even though they
are not relevant.

For our implementation, we used Apache Flink with the
Java API. We published our source code on github.com un-
der the code name mathosphere2. Since all the algorithms
described here are embarrassingly parallel, the required run-
time for a fixed number of formulae scales almost linearly
with the available computational resources. This demon-
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Figure 2: Specificity versus match depth.

strates that the factors evaluated can be used in an interac-
tive application. The remainder of this section presents the
evaluation results for each individual factor.

4.1 Taxonomic Distance and Data-Type
The 443 (449) matches for Content Dictionary (data-type)

abstraction have the following respective recall, precision
and specificity metrics for both factors

r = 0.27, p = 0.74, s = 0.91. (1)

The high specificity shows that both are relevant similarity
factors.

4.2 Match Depth
Only 10 of 55 math patterns (namely 1f1.0, 1f1.1, 12f1.0,

13f1.0, 15f1.0, 18f1.0, 20f1.0, 38f1.0, 45f1.0, 47f1.0 in table
3) contain exact matches. For the 9 underlying topics 479
pages were evaluated by the assessors. We considered doc-
uments that contain exact matches to the formula pattern
as retrieved documents and calculated the match depths for
them.

We measured the recall, precision and specificity for all
10 search patterns and for match depth from 0 to 14. The
results are averaged over all the 10 search patterns for each
depth, and are presented in Table 1. As evident in Table 1
and Figure 2, the specificity is very high, and it is higher for
smaller depths. This indicates that the match depth factor
is a relevant similarity factor, and confirms that the smaller
the depth, i.e., the less deeply nested the match, the higher
the relevance.

4.3 Coverage
To calculate the coverage factor, we took the maximum

value of the coverages over all (search-pattern, formula) pairs
within a document section. For each coverage level (from 0
to 10), we compute average recall, precision and specificity
over all 55 search patterns. The results are presented in
Table 2.

As Table 2 and Figure 3 show, the specificity is higher
for higher levels of coverage, thus showing that coverage is
a relevant similarity measure. Notice that the specificity of
the coverage factor is not as high as the specificity of the
earlier factors. This could be attributed to the coverage be-
ing insensitive to the mathematical structure of expressions.

Table 1: This table lists the match depth d, average
recall r, average precision p, and average specificity
s, all averaged over 10 search patterns.

d r p s

0 0.15 0.72 0.93

1 0.24 0.67 0.89

2 0.32 0.78 0.88

3 0.38 0.82 0.88

4 0.40 0.82 0.88

5 0.40 0.74 0.87

6 0.40 0.74 0.87

10 0.40 0.74 0.87

13 0.40 0.74 0.87

14 0.40 0.74 0.87
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Figure 3: Specificity versus query coverage.

This insensitivity makes coverage a less important factor.

4.4 Formula vs. Expression
In order to test the hypothesis that mathematical objects

classified as formulae are more relevant compared to non-
formula expressions, the search returns all and only articles
containing at least one formula.

For this factor we found that the average recall, precision
and specificity over all 55 search patterns are:

r = 0.28, p = 0.49, s = 0.26. (2)

The low specificity shows that many sections that contain
expressions but not formulae have been considered as rele-
vant by the assessors. This seems to indicate that this factor
is of lower relevance to search ranking than the other 4 fac-
tors considered.

5. CONCLUSION AND OUTLOOK
The NTCIR-11 data set provides a good basis for our

evaluation. We have found good evidence that four out of
five factors are relevant. For the nominal factors 3 (match
depth) and 4 (coverage), we demonstrated (anti)-correlation
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Table 2: This table lists precision p, recall r, and
specificity s, depending on the coverage category c.

c r p s

0 1.00 0.48 0.00

1 0.79 0.48 0.20

2 0.77 0.48 0.22

3 0.69 0.47 0.29

4 0.65 0.47 0.33

5 0.62 0.47 0.36

6 0.50 0.48 0.51

7 0.47 0.49 0.55

8 0.37 0.46 0.60

9 0.34 0.48 0.66

10 0.31 0.46 0.67

to the specificity. This indicates that these factors can be
used for result ranking in Math Information Retrial systems.
It is not very surprising that the measured categorical val-
ues for content and data-type abstraction are almost iden-
tical. While these abstractions differ in their conceptual
background, their actual implementations are similar. This
justifies the approach of Zhang and Youssef to combine both
factors and use the taxonomic distance to compare nodes of
data type function only. However, with special regard to
query refinement and content summarization (which are not
part of the task), further research in this direction is needed.
At this point, we also note that the aforementioned factors
heavily rely on high quality content MathML. Even though
the content MathML automatically generated by LATEXML
is a decent starting pointing, we still see improvement po-
tential here.

We have observed two points which will help improve the
analysis of our similarity factors and formula-centric math
information retrieval systems which incorporate a combina-
tion of these factors. The retrieval units in the Math Task
are document sections, not individual equations. In our
evaluation, we used the best matching result if there was
more than one formula. This assumption could easily be
dropped if the retrieval unit was more fine-grained. In the
NTCIR-11 Math Task, the influence of keywords was con-
sidered. Since the analysis presented in this paper does not
take keywords into account, the influence of the keywords to
the relevance ranking adds random noise from the similarity
factor viewpoint. In NTCIR-11, there was a new experi-
mental Wikipedia Subtask. Both of these weak points are
not available in the Wikipedia Subtask and therefore we are
looking forward to future NTCIR conferences which might
incorporate the Wikipedia task as a second main task, and
provide human evaluation for the Wikipedia query results.
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Table 3: Query data. This table first lists query IDs followed by
the queries, where the qvar elements (universal variables see https://

trac.mathweb.org/MWS/wiki/MwsQuery) are listed in red. The columns
v = 0 − 4 represent the relevance ranking (from the non relevant to
the most relevant). Columns F1 through F5 correspond to similarity-
measure factors 1−5. The number of Content Dictionary matches is F1,
the number of data type matches is F2, the number of exact matches at
any depth is F3, the average coverage is F4, and the number of formulae
(as opposed to expressions) is F5.

ID query v = 0 v = 1 v = 2 v = 3 v = 4 F1 F2 F3 F4 F5

1f1.0 square(phi) = id 447 207 784 209 11 12 13 1 0.19 441

1f1.1 phi 6= id 447 207 784 209 11 44 8 8 0.19 441

2f1.0 ImP+
γ = C+

µ (γ) 399 219 19 0 14 0 0 0 0.07 106

3f1.0 L′d−k = Lk 764 80 99 10 0 0 0 0 0.12 239

4f1.0 Bσ3B = σ3 1307 19 72 11 7 5 5 0 0.11 383

5f1.0 SEH = 1
G3
od3x

√
−g(3) 75 187 313 48 73 0 0 0 0.14 198

6f1.0 S = −T p
∫
dp+1x

√
g 936 249 118 90 205 0 0 0 0.36 445

7f1.0 x y
z
− u v

w
847 232 12 42 0 0 0 0 1.00 246

8f1.0 x ≤ 6
2n

+ 12ε 864 119 14 24 0 0 0 0 0.15 225

9f1.0 xin = (1− ε)f + ε
2
[g + h] 1726 79 224 0 0 0 0 0 0.18 527

10f1.0 f(x) = 1

σ
√
2π
z 458 160 68 8 60 0 0 0 0.17 231

11f1.0 p2 + x2(ix)ε 649 466 9 25 84 11 11 0 0.22 369

12f1.0 L∞ 515 135 66 47 36 196 205 122 0.30 117

13f1.0 (D) 645 7 17 60 6 723 727 281 0.38 103

14f1.0 −tr(xlnx) 427 147 42 7 17 0 0 0 0.23 164

15f1.0 1
ns 666 10 115 0 43 87 78 52 0.32 157

16f1.0 f(x) = x 909 66 4 72 9 22 76 0 1.00 322

17f1.0 f(z) = zd + c 579 50 14 83 70 8 12 0 0.35 211

18f1.0 az+b
cz+d

531 30 0 44 290 34 34 33 0.27 285

19f1.0 Hn−k(X) 245 60 10 213 431 13 23 0 0.25 175

20f1.0 x2 − x− 1 = 0 1562 11 47 44 123 6 6 5 0.29 502

21f1.0 f(ax+ by) < af(x) + bf(y) 418 265 59 35 24 0 0 0 0.32 195

22f1.0
∫
M
fdS 183 109 97 52 328 29 31 0 0.23 182

23f1.0 〈·, ·〉 114 108 174 239 112 141 141 0 0.04 92

24f1.0 ĈH
p
(A) ∼= Y 324 48 11 80 236 1 1 0 0.16 72

25f1.0 d̂eg(xk11 xk22 · · ·x
kn
n ) 1016 15 14 10 6 0 0 0 0.30 256

26f1.0 det(a1b2 − a2b1 + c) 738 193 12 20 0 0 0 0 0.28 249

27f1.0 E(λ) = −m2
dyn(λ) 484 496 19 12 99 3 3 0 0.10 323

28f1.0 Φ4 426 21 8 181 130 207 347 0 0.09 146

29f1.0
∑∞
n=0 t

mak(x) 373 665 13 222 61 0 0 0 0.28 349

30f1.0 CPn 240 15 0 16 319 123 128 0 0.13 80
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31f1.0 k + 1/(3k + c) 877 44 96 38 0 0 0 0 0.43 397

32f1.0 |u · v| ≤ ||u||||v|| 729 74 27 14 0 2 2 0 0.00 227

33f1.0 ||fg||1 ≤ ||f ||p||g||q 878 34 25 11 42 2 4 0 0.22 259

34f1.0 lim
n→∞

∫
X

fndu =
∫
X

lim
n→∞

fndu 833 57 69 51 0 0 0 0 0.24 242

35f1.0 ||x− a|| ≤ 1
||a−1|| 1089 82 27 9 6 0 0 0 0.38 328

36f1.0 ρ(A) = lim
n→∞

||An||1/n 384 210 22 38 90 10 10 0 0.22 217

37f1.0 A = USV T 521 249 85 60 151 10 10 0 0.30 293

38f1.0 ||x+ y||p ≤ ||x||p + ||y||p 260 337 70 169 33 7 6 1 1.00 264

39f1.0 P[X ≥ t] ≤ E[X]
t

196 303 52 14 37 1 1 0 0.05 132

40f1.0 lim
n→∞

P[|An −E[X]| > e] = 0 443 381 39 6 3 0 0 0 0.12 194

41f1.0 P[ lim
n→∞

An = E[X]] = 1 103 255 158 3 17 0 0 0 0.19 123

42f1.0 E =
∞⊕
i=0

Ei 197 152 340 42 22 14 14 0 0.22 156

43f1.0
∮
C

B · d` = µ0I 1000 1251 78 16 31 0 0 0 0.03 606

44f1.0 xn + yn = zn 1250 16 3 58 24 5 7 0 1.00 292

44f1.1 x, y, z, n ∈ N 1250 16 3 58 24 0 0 0 0.00 292

45f1.0 1+
√

5
2

n
565 103 40 5 77 9 10 9 0.30 198

46f1.01
1024k10− 2560k9 + 3840k8

−4480k7 + 4096k6 − 2944k5

+1696k4 − 760k3 + 236k2 − 40k

890 19 23 19 2 0 0 0 0.16 220

47f1.0 Pn = 2Pn−1 + Pn−2 948 142 10 18 82 7 7 3 0.39 383

48f1.0 ẋ(t) = Ax(t) +Bu(t) 78 759 45 0 25 3 3 0 0.22 162

48f1.1 t ∈ R 78 759 45 0 25 63 63 0 0.15 162

48f1.2 x(t) ∈ Rn 78 759 45 0 25 4 4 0 0.18 162

48f1.3 u(t) ∈ Rm 78 759 45 0 25 4 4 0 0.16 162

49f1.0
∑2∗k−1
n=1 (−1)n ∗ cos(1/4 ∗ π) ∗ n2/k = R 1074 155 9 0 0 0 0 0 0.25 348

50f1.0 χ′a(G) ≤ ∆(G) + 6 462 7 121 84 228 4 3 0 0.02 223

1We added line breaks to the query 46f1.0 to improve readability.
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